Note

DETERMINATION OF THE SPECIFIC HEATS OF ORTHOTELLURATES

G.G. GOSPODINOV and B.G. BOGDANOV

Department of Inorganic Chemistry and Central Research Laboratory, Higher Institute of Chemical Technology, Bourgas 8010 (Bulgaria)

(Received 19 March 1985)

In the literature [1-3], seignette and antiseignette properties were established for a number of compounds with a perovskite-type structure containing Te⁶⁺ ions. A conclusion was made as to the seignette-active role of the tellurium sublattice made up of relatively small-size, $P_{Te^{6+}} = 0.56$ Å, highly polarized, high-charge cations.

As far as the other properties of orthotellurites are concerned, there are only few investigations. We published a method for synthesizing orthotellurites as well as our results on the crystallographic parameters of the compounds obtained and their thermal dissociation [4]. This work presents our results for the specific heats of these compounds.

EXPERIMENTAL, RESULTS AND DISCUSSION

The synthesis of orthotellurates and the methods of chemical and X-ray analyses are described in ref. 4. According to the chemical and X-ray analysis data, these compounds pertain to the corresponding orthotellurates given in Table 1.

The specific heats of orthotellurates were determined using the technique described in ref. 5 by heating the samples over the interval 400-540°C at a rate of 1° min⁻¹. Al₂O₃ was used as a reference substance. The results were analysed by the least-squares method with an Izot-310 computer using the FORTRAN-IV program, and were described by the equation $c_p = a + bT + cT^2$. The coefficients for the various orthotellurates are given in Table 1. A comparison of the experimental c_p values with those calculated by the equations found shows that they differ by no more than 0.25%. At 170°C there is a maximum on the curve for the temperature dependence of the thermal capacity at constant pressure, $c_p = f(T)$, for the Pb₃TeO₆ crystals (Fig. 1 and Table 2).

These results and those of the high temperature X-ray analyses make it possible to suppose that at 170° C Pb₃TeO₆ undergoes a first-order, irreversi-

Compound	а	Ь	с
u ₃ TeO ₆	47.570	1.392×10^{-2}	2.720×10^{-6}
In TeO ₆	10.767	13.876×10^{-2}	-9.789×10^{-5}
d ₃ TeO ₆	68.359	-8.481×10^{-2}	1.588×10^{-4}
1 ₂ TeO ₆	25.145	5.174×10^{-2}	-1.510×10^{-5}
$a_2 TeO_6$	58.124	-7.848×10^{-2}	1.232×10^{-4}
$1_2 TeO_6$	63.718	-8.612×10^{-2}	1.068×10^{-4}
1_2TeO_6	79.591	-14.355×10^{-2}	1.755×10^{-4}
i ₂ TeO ₆	61.276	-7.149×10^{-2}	1.084×10^{-4}
$i_{6}Te_{2}O_{15}$	91.008	2.395×10^{-2}	6.333×10^{-5}

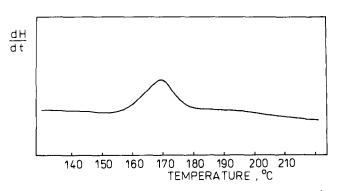


Fig. 1. DSC curve for Pb_3TeO_6 at a heating rate of 5° min⁻¹.

TABLE 2

Heat capacity of Pb₃TeO₆ at different temperatures (cal mol⁻¹ K⁻¹)

Temp. (K)	400	420	440	460	480	500	520	540
Heat			<u> </u>			<u> </u>		
capacity	44.564	46.236	51.533	47.207	46.636	45.897	45.703	45.330

ble phase transition which is most probably connected with a seignette-electric state arising. The enthalpy of the transition is $\Delta H = 50 \pm 1.5$ cal mol⁻¹.

REFERENCES

- 1 E.D. Politova and Yu.N. Wenevtsev. Mater. Res., 10 (1975) 319.
- 2 E.D. Politova and Yu.N. Venevtsev, Dokl. Akad. Nauk SSSR, 209 (1973) 838.
- 3 E.D. Politova and Yu.N. Venevtsev, Izv. Akad. Nauk SSSR Ser. Phys., 39 (1975) 770.
- 4 G.G. Gospodinov and K.M. Gjurova, Thermochim. Acta, 81 (1984) 349.
- 5 J.L. McNaagyon and C.T. Mortimer, Differentiel Scanning Calorimetry, The Perkin-Elmer Corporation, Norwalk, CT; reprinted from IRS, Physical Chemistry Series 2, Vol. 10, 1975.

TABLE 1